Part Number Hot Search : 
NJM2150V 150200 DT54F 100TS 00LVE 2SD18 1SS380TF AT43USB
Product Description
Full Text Search
 

To Download V23990-P588-C88-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p588-*88-pm flow1 1200v/8a 3~rectifier, optional brc, inverter, ntc very compact housing, easy to route igbt! / emcon4 technology for low saturation losses and improved emc behaviour industrial drives embedded drives v23990-p588-a88-pm V23990-P588-C88-PM t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 33 t c =80c 47 t h =80c 37 t c =80c 60 maximum junction temperature t j max 150 c inverter transistor t h =80c 12 t c =80c 15 t h =80c 44 t c =80c 67 t sc t j 150c 10 s v cc v ge =15v 800 v 24 20 p tot gate-emitter peak voltage power dissipation per diode i 2 t w a 310 types i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode 250 a features flow1 target applications schematic dc forward current surge forward current t j =25c t j =t j max t j =t j max p tot t p =10ms 50 hz half sine wave pulsed collector current power dissipation per igbt maximum junction temperature short circuit ratings turn off safe operating area collector-emitter break down voltage dc collector current t j =t j max t j =t j max v ce 1200v, t j t op max t p limited by t j max a 1200 a v 24 v ce i c v ge i cpulse t j max w a v c 175
v23990-p588-*88-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 20 t c =80c 20 t h =80c 23 t c =80c 32 brake transistor t h =80c 8 t c =80c 10 t h =80c 32 t c =80c 49 t sc t j 150c 10 s v cc v ge =15v 800 v thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 20 1200 comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clearance -40+(tjmax - 25) c storage temperature t stg -40+125 c t j =t j max t p limited by t j max dc forward current t j =t j max a i f v rrm a v ce i cpuls i c v ge w 175 c maximum junction temperature peak repetitive reverse voltage repetitive peak forward current power dissipation per diode collector-emitter break down voltage pulsed collector current gate-emitter peak voltage p tot v c w t p limited by t j max t j =t j max 20 a 16 a 12 175 maximum junction temperature t j max t j =t j max short circuit ratings turn off safe operating area dc collector current power dissipation per igbt vce 1200v, tj top max v a v t j max i frm p tot 1200 copyright vincotech 2 revision: 1
v23990-p588-*88-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,16 1,6 tj=125c 1,13 tj=25c 0,90 tj=125c 0,78 tj=25c 8 tj=125c 11 12 tj=25c tj=150c 2 thermal resistance chip to heatsink per chip r thjh 1,89 thermal resistance chip to heatsink per chip r thjh 1,68 tj=25c 5 5,8 6,5 tj=125c tj=25c 1,6 1,87 2,1 tj=125c 2,29 tj=25c 0,0024 tj=125c tj=25c 100 tj=125c tj=25c 71 tj=125c 72 tj=25c 19 tj=125c 22 tj=25c 194 tj=125c 250 tj=25c 79 tj=125c 110 tj=25c 0,50 tj=125c 0,80 tj=25c 0,43 tj=125c 0,66 thermal resistance chip to heatsink per chip r thjh 2,16 thermal resistance chip to heatsink per chip r thjh 1,87 tj=25c 1,35 1,88 2,05 tj=125c 1,81 tj=25c 8 tj=125c 10 tj=25c 251 tj=125c 411 tj=25c 0,89 tj=125c 1,72 di(rec)max tj=25c 84 /dt tj=125c 64 tj=25c 0,34 tj=125c 0,69 thermal resistance chip to heatsink per chip r thjh 2,68 thermal resistance chip to heatsink per chip r thjh 2,37 tj=25c k/w preapplied phase change material ma pf 1 15 mws ns ns a nc na k/w v v 85 rgon=32 thermal grease t hickness 50um = 1 w/mk 1 500 600 0,00085 25 0 960 25 1200 collector-emitter saturation voltage collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current reverse recovery time reverse recovered energy peak rate of fall of recovery current turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current r everse transfer capacitance diode forward voltage gate charge c ies 8 rgon=32 0 2 0 15 rgoff=32 f=1mhz m ws a/s k/w k/w c reverse current i r k/w v v m ma 3 0 30 30 characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode value conditions input capacitance o utput capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage v ge(th) v ce(sat) i ces r gint i ges t f e on e off t d(on) i rrm v f erec c oss c rss q rr t rr q gate t r t d(off) v ce =v ge thermal grease thickness 50um = 1 w/mk 0 15 1200 v - tj=25c 53 1430 thermal grease thickness 50um = 1 w/mk p reapplied phase change material k/w preapplied phase change material copyright vincotech 3 revision: 1
v23990-p588-*88-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions tj=25c 5 5,8 6,5 tj=125c tj=25c 1,6 1,96 2,1 tj=125c 2,27 tj=25c 0,002 tj=125c tj=25c 120 tj=125c - tj=25c 70 tj=125c 68 tj=25c 11 tj=125c 15 tj=25c 211 tj=125c 243 tj=25c 73 tj=125c 82 tj=25c 0,08 tj=125c 0,13 tj=25c 0,06 tj=125c 0,09 thermal resistance chip to heatsink per chip r thjh 2,95 thermal resistance chip to heatsink per chip r thjh 2,55 tj=25c 1,35 1,88 2,05 tj=125c 1,79 tj=25c 2,7 tj=125c tj=25c 2,98 tj=125c 3,78 tj=25c 174 tj=125c 333 tj=25c 0,215 tj=125c 0,215 di(rec)max tj=25c 44 /dt tj=125c 43 tj=25c 0,081 tj=125c 0,246 thermal resistance chip to heatsink per chip r thjh 3,86 thermal resistance chip to heatsink per chip r thjh 3,33 preapplied phase change material 80 900 tj=25c tj=25c 1200 1200 600 25 1200 10 rgon=64 rgon=64 thermal grease t hickness 50um = 1 w/mk p reapplied phase change material thermistor thermal grease t hickness 50um = 1 w/mk 1 5 brake diode reverse recovery energy t rr q rr e rec reverse recovery time i rrm diode forward voltage reverse leakage current v f i r ma na ns pf mws 15 2 0 15 0 0 rgon=64 rgoff=64 v ce =v ge f=1mhz i ges 0 ? r/r r ated resistance r power dissipation constant deviation of r25 mw/k power dissipation p mw brake transistor k/w k /w c oss e on output capacitance c rss c ies integrated gate resistor peak rate of fall of recovery current peak reverse recovery current reverse recovered charge t f fall time t d(on) t r turn-off delay time t d(off) e off turn-on energy loss per pulse r gint turn-off energy loss per pulse rise time turn-on delay time input capacitance reverse transfer capacitance gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage collector-emitter cut-off incl diode gate emitter threshold voltage 15 0,0005 2 200 55 tj=25c 5 -5 % 22000 m ws c v k/w k/w a n s a/s a v v b-value b (25/50) tol. 3% tj=25c 3950 k b (25/100) tj=25c 3998 k b-value tol. 3% vincotech ntc reference b tj=25c copyright vincotech 4 revision: 1
v23990-p588-*88-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 o utput inverter igbt figure 4 output inverter fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 5 10 15 20 25 0 1 2 3 4 5 v ce (v) i c (a) 0 2 4 6 8 10 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 2 4 6 8 10 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 1
v23990-p588-*88-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 8 a r goff = 32 figure 7 o utput inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 8 a output inverter e on high t e off high t e on low t e off low t 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 0 3 6 9 12 15 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 0 20 40 60 80 100 120 140 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,2 0,4 0,6 0,8 1 0 3 6 9 12 15 i c (a) e (mws) e rec t j = t jmax -25c e rec t j = 25c 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0 40 80 120 160 r g ( w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 6 r evision: 1
v23990-p588-*88-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 8 a r goff = 32 figure 11 o utput inverter fwd figure 12 output inverter fwd typical reverse recovery time as a t ypical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 8 a r gon = 32 v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 2 4 6 8 10 12 14 16 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0 20 40 60 80 100 120 140 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 20 40 60 80 100 120 140 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0 3 6 9 12 15 i c (a) t rr ( m s) 25 / 150 25 / 150 copyright vincotech 7 r evision: 1
v23990-p588-*88-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a t ypical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 8 a r gon = 32 v ge = 15 v figure 15 o utput inverter fwd figure 16 output inverter fwd typical reverse recovery current as a t ypical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 8 a r gon = 32 v ge = 15 v output inverter t j = t jmax - 25c t j = 25c i rrm 0 5 10 15 20 25 0 20 40 60 80 100 120 140 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 0,4 0,8 1,2 1,6 2 0 20 40 60 80 100 120 140 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 2 4 6 8 10 12 0 2 4 6 8 10 12 14 16 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 0,5 1 1,5 2 2,5 3 0 3 6 9 12 15 i c (a) q rr ( m c) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 8 r evision: 1
v23990-p588-*88-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward t ypical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 8 a r gon = 32 v ge = 15 v figure 19 o utput inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 2,16 k/w r thjh = 1,87 k/w r thjh = 2,68 k/w r thjh = 2,37 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,05 4,1e+00 0,04 4,1e+00 0,05 7,9e+00 0,04 7,9e+00 0,25 5,5e-01 0,22 5,5e-01 0,27 7,3e-01 0,24 7,3e-01 0,99 1,0e-01 0,85 1,0e-01 1,07 1,3e-01 0,94 1,3e-01 0,45 1,9e-02 0,39 1,9e-02 0,69 2,5e-02 0,61 2,5e-02 0,24 3,3e-03 0,21 3,3e-03 0,36 3,6e-03 0,32 3,6e-03 0,18 4,0e-04 0,16 4,0e-04 0,25 4,3e-04 0,22 4,3e-04 output inverter thermal grease phase change material thermal grease phase change material thermal grease phase change material thermal grease phase change material t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt di rec /dt high t 0 500 1000 1500 2000 2500 3000 0 20 40 60 80 100 120 140 r gon ( w ww w ) di rec / dt (a/ m s) di o /dt low t di 0 /dt high t di 0 /dt di rec /dt low t di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 50 100 150 200 250 300 350 400 450 500 0 2 4 6 8 10 12 14 16 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt 25 / 150 25 / 150 copyright vincotech 9 r evision: 1
v23990-p588-*88-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 o utput inverter fwd figure 24 output inverter fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 4 8 12 16 20 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 4 8 12 16 20 24 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 1
v23990-p588-*88-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function g ate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 8 a t h = 80 oc v ge = 15 v t j = t jmax oc figure 27 o utput inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 1200 v v ce 1200 v t j 175 oc t j = 175 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 5 10 15 20 0 25 50 75 q g (nc) v ge (v) 240v 960v 0 2,5 5 7,5 10 12,5 15 17,5 12 13 14 15 16 17 v ge (v) t sc (s) 0 25 50 75 100 12 14 16 18 20 v ge (v) i c (sc) copyright vincotech 11 revision: 1
v23990-p588-*88-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 oc u ccminus =u ccplus switching mode : 3 level switching 0 4 8 12 16 20 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 revision: 1
v23990-p588-*88-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics t ypical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 b rake igbt figure 4 brake fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 3 6 9 12 0 1 2 3 4 5 v ce (v) i c (a) 0 1 2 3 4 5 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 3 6 9 12 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 3 6 9 12 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 1
v23990-p588-*88-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 64 i c = 1 a r goff = 64 figure 7 b rake fwd figure 8 brake fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 64 i c = 1 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 0,1 0,2 0,3 0,4 0,5 0,6 0 1 2 3 4 5 6 7 8 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,05 0,1 0,15 0,2 0,25 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) t j = t jmax -25c e off t j = 25c e on e off 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0 1 2 3 4 5 6 7 8 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0,00 0,03 0,06 0,09 0,12 0,15 0,18 0,21 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 1 4 revision: 1
v23990-p588-*88-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 64 i c = 1 a r goff = 64 figure 11 b rake igbt figure 12 brake fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 2,95 k/w r thjh = 2,55 k/w r thjh = 3,86 k/w r thjh = 3,33 k/w brake thermal grease phase change material thermal grease phase change material t doff t f t don t r 0,00 0,01 0,10 1,00 0 1 2 3 4 5 6 7 8 i c (a) t ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 50 100 150 200 250 300 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 15 revision: 1
v23990-p588-*88-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 b rake fwd figure 16 brake fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc brake 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) p tot (w) 0 2 4 6 8 10 12 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 0 50 100 150 th ( o c) p tot (w) 0 3 6 9 0 50 100 150 th ( o c) i f (a) copyright vincotech 16 revision: 1
v23990-p588-*88-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at d = t p / t t p = 250 s r thjh = 1,89 k/w r thjh = 1,68 k/w figure 3 r ectifier diode figure 4 rectifier diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc thermal grease phase change material input rectifier bridge 0 20 40 60 80 0,0 0,5 1,0 1,5 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 0 50 100 150 t h ( o c) p tot (w) 0 15 30 45 60 0 50 100 150 t h ( o c) i f (a) copyright vincotech 17 revision: 1
v23990-p588-*88-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic t ypical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 25 45 65 85 105 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 1 00/25 11 2 5 )( tt b ertr copyright vincotech 18 revision: 1
v23990-p588-*88-pm t j 125 c r gon 32  r goff 32  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 8 a i c (100%) = 8 a t doff = 0,24 s t don = 0,07 s t eoff = 0,50 s t eon = 0,27 s figure 3 o utput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 8 a i c (100%) = 8 a t f = 0,11 s t r = 0,02 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -40 -20 0 20 40 60 80 100 120 140 -0,4 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -25 0 25 50 75 100 125 150 175 200 225 2,8 3 3,2 3,4 3,6 3,8 4 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % v ce i c t f i c10% i c90% -25 0 25 50 75 100 125 150 175 200 225 2,9 3 3,1 3,2 3,3 3,4 3,5 3,6 3,7 time(us) % t r v ce i c copyright vincotech 19 revision: 1
v23990-p588-*88-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 4,93 kw p on (100%) = 4,93 kw e off (100%) = 0,62 mj e on (100%) = 0,75 mj t eoff = 0,50 s t eon = 0,27 s figure 7 o utput inverter fwd figure 7 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = -15 v v d (100%) = 600 v v geon = 15 v i d (100%) = 8 a v c (100%) = 600 v i rrm (100%) = -10 a i c (100%) = 8 a t rr = 0,38 s q g = 61,71 nc switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -20 20 60 100 140 180 220 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -160 -120 -80 -40 0 40 80 120 2,9 3,1 3,3 3,5 3,7 time(us) % i d v d fitted copyright vincotech 20 revision: 1
v23990-p588-*88-pm figure 8 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 8 a p rec (100%) = 4,93 kw q rr (100%) = 1,57 c e rec (100%) = 0,63 mj t qrr = 0,80 s t erec = 0,80 s switching definitions output inverter t qrr -150 -100 -50 0 50 100 150 2,8 3 3,2 3,4 3,6 3,8 4 % i d q rr time(us) -20 0 20 40 60 80 100 120 2,8 3 3,2 3,4 3,6 3,8 4 time(us) % p rec e rec t erec copyright vincotech 21 revision: 1
v23990-p588-*88-pm in datamatrix as in packaging barcode as p588-a88 p588-a88 p588-c88 p588-c88 a version c version 3-leg 3-leg pin x y 1 52,55 0 2 47,7 0 3 44,8 0 4 37,8 0 5 37,8 2,8 6 35 0 7 35 2,8 8 28 0 9 25,2 0 10 22,4 0 11 19,6 0 12 16,8 0 13 14 0 14 11,2 0 15 8,4 0 16 5,6 0 17 2,8 0 18 0 0 19 0 28,5 20 2,8 28,5 pin x y pin x y 21 7,5 28,5 25 29 28,5 29 52,55 25 22 14,5 28,5 26 31,8 28,5 30 52,55 16,9 23 17,3 28,5 27 36,5 28,5 31 52,55 8,6 24 22 28,5 28 43,5 28,5 32 52,55 2,8 w/o pin 1,31,32 rectifier break igbt break fwd ordering code pin table without thermal paste 17mm housing V23990-P588-C88-PM pin table pin table v23990-p588-a88-pm inverter igbt inverter fwd outline p inout ordering code & marking ordering code and marking - outline - pinout features version without thermal paste 17mm housing
v23990-p588-*88-pm disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 1


▲Up To Search▲   

 
Price & Availability of V23990-P588-C88-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X